0=2+160t-16t^2

Simple and best practice solution for 0=2+160t-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2+160t-16t^2 equation:



0=2+160t-16t^2
We move all terms to the left:
0-(2+160t-16t^2)=0
We add all the numbers together, and all the variables
-(2+160t-16t^2)=0
We get rid of parentheses
16t^2-160t-2=0
a = 16; b = -160; c = -2;
Δ = b2-4ac
Δ = -1602-4·16·(-2)
Δ = 25728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25728}=\sqrt{64*402}=\sqrt{64}*\sqrt{402}=8\sqrt{402}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{402}}{2*16}=\frac{160-8\sqrt{402}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{402}}{2*16}=\frac{160+8\sqrt{402}}{32} $

See similar equations:

| 3d+4-9d+2=0 | | -11x(x+3)+18=(8-3x)7 | | 10+4m=-8+-7m | | 3/4=a/4a-1 | | 4(3x+9)=-28+16 | | 6x^2-2x+36=5x^2+12x | | 64^2x=16 | | 7/8+w=1/4 | | 3.2=-0.43.2n | | −7b−14=−5b−4b | | x+4/2=10 | | 4)−7b−14=−5b−4b | | 7x+9x-9=4(4x+2) | | 20=10x+-15 | | x-0.07x-409500=75000 | | 2x+25=7x+9 | | -1-8-2u=-5u-6 | | z+18=-50 | | 10=-16t^2+30t+6 | | 31=9w-5 | | t(t+4)-1=t(t=2)+2 | | x-0.07x=75000 | | -1−8−2u=-5u−6 | | 8x-5=15x+1 | | 20x^2-36x-16=0 | | 6y+3=8y-29 | | 1.3(8-6)+3.7g=-5.2g | | 11g=4(9g-5)-18 | | -3-7m=-10-6m | | -3u(u-7)(u-5)=0 | | 6x-3(3x-2)=9 | | w−14=65 |

Equations solver categories